
Computer Systems

 Dr. Barry Wittman
 Not Dr. Barry Whitman
 Education:
 PhD and MS in Computer Science, Purdue University
 BS in Computer Science, Morehouse College

 Hobbies:
 Reading, writing
 Enjoying ethnic cuisine
 DJing
 Lockpicking
 Stand-up comedy

 E-mail: wittman1@otterbein.edu
 Office: Art & Communication C123
 Phone: (614) 823-2944
 Office hours: MWF 10:15 – 11:15 a.m.,

MW 3:00 – 4:00 p.m.,
F 3:00 – 5:00 p.m.,
T 10:00 – 11:15 a.m.,
TR 2:00 – 4:00 p.m.,
and by appointment

 Website:
http://faculty.otterbein.edu/wittman1/

94%

6%

Majors

Computer
Science

Chemistry

 What's the purpose of this class?
 What do you want to get out of it?
 Do you want to be here?

 Brian W. Kernighan and Dennis M. Ritchie
 The C Programming Language
 2nd Edition, 1988, Prentice Hall
 ISBN-10: 0131103628
 ISBN-13: 978-0131103627
 Required textbook
 The book that every serious computer scientist

must have a copy of

 Michael Kerrisk
 The Linux Programming Interface
 First Edition, 2010, No Starch Press
 ISBN-10: 1593272200
 ISBN-13: 978-1593272203
 Amazing book that you'll want to keep in

your bag of tricks for all your future Linux
hacking

 Optional textbook

 You are expected to read the material before class
 If you're not prepared, you might be asked to leave
 You might forfeit the education you have paid around $100

per class meeting to get!

 C expertise
 Another language in your tool belt

 Deeper knowledge of CPU and memory management
 Better understanding of the underlying OS
 Linux proficiency
 Command line tools
 Loving your inner geek

For more information, visit the webpage:
http://faculty.otterbein.edu/wittman1/comp2400

 The webpage will contain:
 The most current schedule
 Notes available for download
 Reminders about exams and homework
 Syllabus
 Detailed policies and guidelines

 36% of your grade will be six equally weighted projects
 Each will focus on a different major area from the course:
 Basic math and I/O
 Bitwise operations
 String manipulation
 Memory allocation
 Dynamic data structures
 Socket communication

 You will work on each project in two-person teams

 All projects are done in teams of two
 You may pick your partners
 But you have to have a different partner for each project!
 Use Brightspace to form teams

 Projects must be uploaded to Brightspace:
https://otterbein.brightspace.com

https://otterbein.brightspace.com/

 Projects must be uploaded to Brightspace before the deadline
 Late projects will not be accepted
 Exception: Each person will have 3 grace days
 You can use these grace days together or separately as extensions

for your projects
 You must inform me before the deadline that you are going to use

grace days
 If two people in a team don't have the same number of grace days,

the number of days they will have available will be the maximum of
those remaining for either teammate

In-class Programming Exercises

 15% of your grade will be based around programming labs
 Labs are on Tuesdays and Thursdays
 15 of these labs will focus on the solution of a problem with a

graded exercise
 Work should be done individually, but the goal is to learn, and

I will help everyone
 The remaining lab days are to discuss course material and

work on team projects
 You are expected to attend all lab days

 5% of your grade will be tickets out the door
 These tickets will be based on material covered in the previous

one or two lectures
 They will be graded leniently
 They are useful for these reasons:

1. Informing me of your understanding
2. Feedback to you about your understanding
3. Easy points for you
4. Attendance

 There will be two equally weighted in-class exams totaling
30% of your final grade
 Exam 1: 02/17/2025
 Exam 2: 03/24/2025

 The final exam will be worth another 14% of your grade
 Final: 8:00 – 10:00 a.m.

5/01/2025

Week Starting Topics
K & R

Chapters
LPI

Chapters
Notes

1 01/13/25 Introduction 1 1
2 01/20/25 Data representation 2 11 MLK, Project 1 Due
3 01/27/25 Control flow 2, 3 2, 3
4 02/03/25 Functions 4 6 Project 2 Due
5 02/10/25 Arrays and Strings 4, 5
6 02/17/25 Pointers 5 Exam 1
7 02/24/25 Memory allocation 5 7 Project 3 Due
8 03/03/25 Structs 6 8, 10

03/10/25 Spring Break
9 03/17/25 Advanced structs 6 Project 4 Due

10 03/24/25 Files and streams 7 4 Exam 2
11 03/31/25 File systems 5, 13, 14, 15

12 04/07/25 Networking 5 56, 57, 58, 59 Project 5 Due

13 04/14/25 C++ Notes Good Friday
14 04/21/25 Review All All Project 6 Due

 Project 1: 6% Tentatively due 01/24/2025

 Project 2: 6% Tentatively due 02/07/2025

 Project 3: 6% Tentatively due 02/28/2025

 Project 4: 6% Tentatively due 03/21/2025

 Project 5: 6% Tentatively due 04/09/2025

 Project 6: 6% Tentatively due 04/25/2025

36%
• Six projects
• Equally weighted

15%
• In-class labs

5%
• Tickets out the door

30%
• Two equally weighted midterm exams

14%
• Final exam

A 93-100 B- 80-82 D+ 67-69

A- 90-92 C+ 77-79 D 60-66

B+ 87-89 C 73-76 F 60-62

B 83-86 C- 70-72

 You are expected to attend all classes and labs
 You are expected to have read the material we are going to

cover before class
 Missed tickets out the door cannot be made up
 Exams and labs must be made up before the scheduled time,

for excused absences

 I hate having a slide like this
 I ask for respect for your classmates and for me
 You are smart enough to figure out what that means
 A few specific points:
 Silence communication devices
 Don't play with your phones
 Don't use the computers in class unless specifically told to
 No food or drink in the lab

 We will be doing a lot of work on the computers together
 However, students are always tempted to surf the Internet,

etc.
 Research shows that it is nearly impossible to do two things at

the same time (e.g. watch TikTok and listen to a lecture)
 For your own good, I will enforce this by taking 1% of your

final grade every time I catch you playing on your phones or
using your computer for anything other than course exercises

 Don't cheat
 First offense:
 I will try to give you a zero for the assignment, then lower your final letter grade

for the course by one full grade
 Second offense:
 I will try to fail you for the course and try to kick you out of Otterbein

 Refer to the syllabus for the school's policy
 Ask me if you have questions or concerns
 You are not allowed to look at another student's code, except for

group members in group projects (and after the project is turned in)
 You may not use generative AI tools like ChatGPT to write any code

you turn in for this class
 I will use tools that automatically test code for similarity

 Artificial Intelligence (AI) is any computer system designed to perform a
cognitive or behavioral task historically believed to be one only humans can
perform. Generative AI is a term used for recent AI systems that generate
significant quantities of content such as text, images, audio, or video from a
short input prompt, usually text.

 Although generative AI tools are impressive, they must not be used to write any
code that a student is expected to turn in for this class. Generative AI tools may
be used to explain existing code or to suggest improvements for code but only
after the project or lab in question has been turned in. Students who do not
write code themselves have missed the opportunity to gain the skills of logical
problem solving and translation to a formal programming language that are
essential for computer scientists. Submitting work that includes or is derived
from AI-generated materials shall be considered an act of academic dishonesty.

 The University has a continuing commitment to providing access and
reasonable accommodations for students with disabilities, including
mental health diagnoses and chronic or temporary medical conditions

 Students who may need accommodations or would like referrals to
explore a potential diagnosis are urged to contact Disability Services (DS)
as soon as possible

 DS will facilitate accommodations and assist the instructor in minimizing
barriers to provide an accessible educational experience

 Please contact DS at DisabilityServices@otterbein.edu
 More info can also be found at http://www.otterbein.edu/ods
 Your instructor is happy to discuss accommodations privately with you as

well

mailto:DisabilityServices@otterbein.edu
http://www.otterbein.edu/ods

 Basic types in C are similar to those in Java, but there are
fewer

 No built-in Boolean type in C89 (but more about that later)

Type Meaning Size

char Smallest addressable chunk of memory Usually 1 byte

short Short signed integer type At least 2 bytes

int Signed integer type At least 2 bytes, usually 4 bytes

long Long signed integer type At least 4 bytes

float Single precision floating point type Usually 4 bytes

double Double precision floating point type Usually 8 bytes

 Unlike Java, C has
signed and unsigned
versions of all of its
integer types
 Perhaps even worse,

there's more than one
way to specify their
names

Type Equivalent Types

char signed char

unsigned char

short signed short
short int
signed short int

unsigned short unsigned short int

int signed int

unsigned int unsigned

long signed long
long int
signed long int

unsigned long unsigned long int

 There are also types that are officially supported in C99 but
may or may not be supported by compilers in C89

 Naturally, a long long can also be written as a long
long int, a signed long long int and has siblings
unsigned long long and unsigned long long
int

Type Meaning Size
long long Very long signed integer type At least 8 bytes
long double Extended precision floating point type Usually 10 bytes or 16 bytes

 There's a way to define types in C that we'll get into later
 Someone used it to create a bool type
 It's not part of the C language, but it's commonly used
 To use it, put #include <stdbool.h> at the top of your program
 Once you do that, you'll have access to the bool type and the constants
true and false

 Note that bool is a synonym for _Bool, a special unsigned integer type
added in C99

 The value of true is 1, and the value of false is 0

bool value = true;
bool compare = 4 < 2;

 Structs
 Collections of a fixed set of named

items
 Similar to a class with no methods

and all public members
 Unions
 A set of possible items, but only

one of them is stored at a time
 Used to conserve memory (but

hard to program with)

 Arrays
 Lists of items of with the same

type
 Can be indexed with integers

 Pointers
 Types that point at other variables
 Contain addresses
 Pointer arithmetic is allowed,

meaning that you can point at a
variable, and then see what value
exists 38 bytes later in memory

 The standard Hello World program is simpler in C, since no
surrounding class is needed

#include <stdio.h>

int main()
{

printf("Hello, World!\n");
return 0;

}

 Libraries written by other people (and eventually code you've
written yourself) can be used in your program using the
#include directive
 Only include header files (.h extension)
 stdio.h is the header for basic input and output methods

 Standard libraries are specified in angle brackets:
<stdio.h>

 Local files are specified in quotes: "mycode.h"
 It's legal to put #include directives anywhere in the code,

but it's good style to put them at the top

 Executable code in C is inside of functions
 Functions are similar to methods in Java
 Think of them as static methods, since none of them are in an object

 Execution starts at the main() function
 Traditionally, the main() function has the int return type

and returns 0 at the end
 A value of 0 tells the OS that the program exited without error
 Some people prefer a main()with void as its return type

 The printf() function is the classic console output function in C
 It always prints out a string
 The string can have special control characters inside of it that are

used to print numbers or other strings, all with specified
formatting

 Any number of arguments can be given after the initial string,
provided that there is a format specifier for each one

printf("%d fish, %f fish", 1, 2.0);
printf("%s in socks", "fox");

 These specifiers can be
used in a printf()
format string

 They are preceded by a
percent sign (%)

 You can also specify a
minimum width (after the
%) and a specific precision
(after a . and before the
specifier)

Specifier Output

d, i Integer

u Unsigned integer

f Floating point number

e Floating-point number with exponent

g Floating-point number in standard or
scientific notation depending on size

x Unsigned integer in hexadecimal

o Unsigned integer in octal

s Null-terminated string

c Character

printf("You owe me $%.2f in cash!", 50.0/3);

 You're probably used to using IntelliJ for editing code
 In the Linux world, compilers are often separate from editors
 You can pick whichever text editor you like
 Ubuntu provides GNOME Text Editor
 vim and emacs are two editors that run from the command

line and do not require a GUI
 They take some getting used to but are very powerful

 Click on the white dots in the lower left and type in
"terminal" or just type Ctrl-Alt-t

 A command line will open up
 Type ls to list the current directory contents
 Type cd to change to another directory
 cd .. changes to the parent directory

> cd stuff
> |

 Navigate to whichever directory you saved your .c file
 Type gcc followed by the name of the file

 By default, the executable will be called a.out
 To run your code, type ./a.out
 The ./ specifies the current directory

> gcc hello.c

> ./a.out

 Typically, you'll name your output file rather than using the
default a.out

 For example, to name your output hello, you put -o
hello into the compilation command
 The -o is for output

 To run hello, type ./hello

> gcc hello.c -o hello

> ./hello

 The order of compilation matters
 You have to compile all necessary files yourself to make your

program work
 To make these issues easier to deal with, the make utility is

used
 This utility uses makefiles
 Each makefile has a list of targets
 Each target is followed by a colon and a list of dependencies
 After the list of dependencies, on a new line, preceded by a tab, is

the command needed to create the target from the dependencies

 Makefiles are called makefile or Makefile

all: hello

hello: hello.c
gcc -o hello hello.c

clean:
rm -f *.o hello

 Much of the structure and content of this lecture is based on
notes from Dennis Brylow from his version of CS240 taught at
Purdue University

 More C basics
 C compilation model
 History of Unix and Linux
 Please read K&R Chapter 1 and LPI Chapter 1
 Lab meets tomorrow
 Come to get familiar with Linux
 Choose your teammate for Project 1

 Read K&R Chapter 1 and LPI Chapter 1
 Form your teams for Project 1
 Consider dual-booting Linux on your machine if you don't

have it already
 Another option is running Linux inside of Virtual Box

	COMP 2400
	Who am I?
	How can you reach me?
	Who are you?
	Why are we here?
	Course Overview
	Textbooks
	Textbooks
	You have to read the book
	Course focuses
	More information
	Projects
	Six projects
	Teams
	Turning in projects
	Labs
	Labs
	Tickets Out the Door
	Tickets out the door
	Exams
	Exams
	Course Schedule
	Tentative schedule
	Project schedule
	Policies
	Grading breakdown
	Grading scale
	Attendance
	R-E-S-P-E-C-T
	Computer usage
	Academic dishonesty
	AI statement
	Disability Services
	C Basics
	Types in C
	But, wait, it gets worse …
	And yet again worse than that …
	Bringing in bool
	Derived types
	Hello, World
	Includes
	main() function
	printf() function
	Format specifiers
	Text editors
	Navigating with the command line
	Compiling
	Naming the output
	Makefiles
	Sample makefile
	Credits
	Upcoming
	Next time…
	Reminders

